Quantcast
Channel: Softvelum news: Nimble Streamer, Larix Broadcaster and more
Viewing all 436 articles
Browse latest View live

August news

$
0
0
In August we've added a few interesting features. But first...

Vote!


Voting is now open for the 2016 Streaming Media Readers' Choice Awards.


If you like our products, please find them as follows:
  • Encoding Software: Nimble Transcoder
  • Media Server: Nimble Streamer
Both products are listed under our company name Softvelum. You must enter a valid email address when you vote; you will receive a confirmation email when voting closes on September 26. You must click the link in that confirmation email for your vote to count.
You can read more about nominations on this page and vote.

Subtitles


Nimble Streamer now supports subtitles for VOD streaming via WebVTT, SRT and TTML formats. This support includes both single subtitle files and multiple files via SMIL.
SMIL sample files can be found in a new githib repo.

Read this article for more details.

Codecs


We also extended codecs coverage for Nimble Streamer.
We introduced support for PCM, or G711, (both a-law and μ-law) audio codec.
It can be used as input for Nimble Streamer Live Transcoder for further transformation into AAC.
It also can be used for RTSP transmuxing - it will be passed through from input to output.

Mobile SDK


Our mobile SDK for Android now has new application graphics and layout. It's a lot nicer now - get it on Google Play to check.

Get it on Google Play

You can get our mobile SDK here.

Next month we'll introduce new graphics for iOS as well.

Minor updates


For those who extensively uses WMPSanel API we added a code for sample API proxy on our github.


If you need to get more information for analysis when trying to solve some Nimble-related issue, check Logging levels article. Once you need more details - just use the level you need.


The last but not the least update: check the State of Streaming Protocols for August 2016.


Follow us at FacebookTwitterGoogle+ or LinkedIn to get latest news and updates of our products and services.


Read-only DVR playback and scheduled recording

$
0
0
Nimble Streamer DVR is a popular feature for those of our customers who handle live streaming. New use cases are being covered per requests of clients all the time.

So today we add "read-only" archive parameter along with respective API methods.
Switching the stream to read-only mode allows stop the recording of the stream while making it available for the playback. This is different from current "pause" functionality when the stream is both not recorded nor played.

It should help when you need to make scheduled recording. E.g. some show is running and you set it up to record (disable read-only). When it's over, you set it to read-only and your viewers can watch it.

Another use case is the archive attachment, like when you previously recorded some stream and moved it to some playback dedicated server.

The basic DVR setup is described in this article so here we'll take a look how you can operate this via our excellent web UI. Same operations are available via API so there will be no difference whether you do it by hands or by the script.



Here is what you see when you create a DVR setting for a given application or stream.

DVR settings tab
Your control buttons look like this:
Recording is on, playback is on
This means that DVR works in default mode - recording is running and the playback is available.

Now if you click on "Play" button, your recording will stop but the playback will still be available. Your buttons will look like below.
Recording is off, playback is on
Now if you want to stop any activity, you can click on "Pause" button. Your buttons will look like this:
Fully paused
From here you can either resume the recording (clicking on "Record" button) and resume the playback (clicking on "Play" button).

As mentioned earlier, you may do the same operations via API in order to automate your streaming infrastructure.

If you have any further questions, contact our team.

Related documentation


The State of Streaming Protocols - September 2016

$
0
0
WMSPanel team continues analyzing the state of streaming protocols.

The metrics calculations are based on 3.24 billion views. The stats are collected from 2800+ media servers (Nimble Streamer and Wowza).

Protocols share remain stable, i.e. HLS share is about 71% with RTMP around 12% and progressive download near 10%.

The State of Streaming Protocols, September 2016

You can compare that to August stats below.




The State of Streaming Protocols, August 2016

This report is brought to you by WMSPanel team. We'll keep analyzing protocols to see the dynamics. Check our updates at FacebookTwitterGoogle+ or LinkedIn.

September news

$
0
0
This month we were concentrated on two major directions - improvements and bugfixing in Nimble Streamer and mobile SDK development.


Nimble Streamer

DVR feature set of Nimble Streamer was improved by 2 changes.


  • Archive read-only mode which allows playing the stream while the recording s stopped. As our API also supports this feature, the scheduled recording can be performed easily.
  • Maximum archive size parameter to avoid disk overflow. You can check original DVR setup article to see how you can set it.



Windows Phone live streaming

Mobile broadcasting SDK was improved with Windows Phone support. Your Windows device can now broadcast live stream via RTMP to any media servers or services which support this protocol.

Larix Broadcaster is also available in Windows Store to demonstrate current SDK capabilities.

Get it from Microsoft

You can install it for free and use in any live streaming use cases.


iOS SDK

Our mobile SDK for iOS was improved with new graphics and a "Mute" button.

White label streaming application

If you'd like to customize Larix Broadcaster for any platform by adding custom app name, logo, connection stream etc, you can request it as white label. You wouldn't need to hire developer to customize basic things, so this will same you some efforts and time.
Contact us in case you are interested.



The last but not the least update: check the State of Streaming Protocols for September 2016.


Follow us at FacebookTwitterGoogle+ or LinkedIn to get latest news and updates of our products and services.

Audio-only and video-only transmuxing via SMIL files

$
0
0
Nimble Streamer handles VOD streaming in various ways, one of them is doing ABR VOD using SMIL files.

With the latest update, you can use SMIL to specify separate tracks in MP4 files which will be used transmuxed specifically with only audio or video. This allows lowering the

To illustrate this approach, let's take a look at audio-only use case. We have "bigbuckbunny_450.mp4" file with audio we want to use and video track. There are bunch of other files with different video renditions, without the audio.

Check the sample SMIL file below.

<?xml version="1.0" encoding="UTF-8"?>
<smil title="">
 <body>
  <switch>
   <audioOnly src="bigbuckbunny_450.mp4" systemLanguage="eng" groupId="aac" default="true" autoSelect="true"/>
   <video src="bigbuckbunny_450.mp4" systemLanguage="eng" system-bitrate="450000" hlsAudioGroupId="aac"/>
   <video src="bigbuckbunny_750.mp4" systemLanguage="eng" system-bitrate="750000" hlsAudioGroupId="aac"/>
   <video src="bigbuckbunny_1100.mp4" systemLanguage="eng" system-bitrate="1100000" hlsAudioGroupId="aac"/>
   <video src="bigbuckbunny_1500.mp4" systemLanguage="eng" system-bitrate="1500000" hlsAudioGroupId="aac"/>
  </switch>
 </body>
</smil>

Get it on guthub. You can find other SMILs examples at this github repo.

Notice the groupId="aac" parameter in audioOnly tag, along with hlsAudioGroupId="aac" parameter in each video tag. This virtual group combines them together to use same audio track.

The result playlist would be as follows:
#EXTM3U
#EXT-X-VERSION:3
#EXT-X-MEDIA:TYPE=AUDIO,GROUP-ID="aac",LANGUAGE="eng",DEFAULT="YES",AUTOSELECT="YES",URI="bigbuckbunny__450.mp4_audiochunk.m3u8?nimblesessionid=96"
#EXT-X-STREAM-INF:BANDWIDTH=450000,AUDIO="aac",LANGUAGE="eng"
bigbuckbunny__450.mp4_videochunk.m3u8?nimblesessionid=96
#EXT-X-STREAM-INF:BANDWIDTH=750000,AUDIO="aac",LANGUAGE="eng"
bigbuckbunny__750.mp4_videochunk.m3u8?nimblesessionid=96
#EXT-X-STREAM-INF:BANDWIDTH=1100000,AUDIO="aac",LANGUAGE="eng"
bigbuckbunny__1100.mp4_videochunk.m3u8?nimblesessionid=96
#EXT-X-STREAM-INF:BANDWIDTH=1500000,AUDIO="aac",LANGUAGE="eng"
bigbuckbunny__1500.mp4_videochunk.m3u8?nimblesessionid=96

When the player gets the playlist it still shows multiple renditions and during playback it gives the audio track transmuxed from bigbuckbunny_450.mp4 file, while the video is taken from selected video file.

Multiple audio tracks and videoOnly


You can add multiple audio tracks if you need, this is especially useful for multi-language videos. All you need is to add several audioOnly tag with same groupId, specifying different systemLanguage parameter.
Here's an example of adding French and Spanish audio:
<audioOnly src="bigbuckbunny_450.mp4" systemLanguage="fra" groupId="aac"/>
<audioOnly src="bigbuckbunny_450.mp4" systemLanguage="spa" groupId="aac"/>

Besides audioOnly tag, you may use multiple videoOnly tags the same way as it's described for audio. The player will show the list of renditions and will pick up the required one.

If you have any questions regarding this or related feature sets, please contact us.

Related documentation


Nimble StreamerVOD Streaming in NimbleSMIL support for MPEG-DASH, MP4 transmuxing to HLS VOD streaming, Subtitles support in Nimble StreamerUsing SMIL in Nimble Streamer,

Re-sampling audio with Nimble Streamer Transcoder

$
0
0
Nimble Streamer Live Transcoder gives wide range of capabilities to transform both video and audio. Audio features allow doing various complex actions on sound as well as do some one-step actions like audio re-sampling.

Let's see a sample scenario shown below.

First, you see a passthrough of video just because this demo is for audio.
Then you see audio stream input and audio output with AAC encoder.


In between a custom filter added. Here are the details:


Set filter name to aformat and filter params to sample_rates=32000. This will re-sample audio to 32KHz.

That's it. Saving settings will apply this to designated transcoder instance.


Feel free to visit Live Transcoder webpage for more details and contact us if you have any question.

Related documentation


NVidia NVENC settings in Nimble Streamer Live Transcoder

$
0
0
NVidia® Products with the Kepler, Maxwell and Pascal generation GPUs contain a dedicated accelerator for video encoding, called NVENC, on the GPU die.

NVENCODE API enables software developers to configure this dedicated hardware video encoder. This dedicated accelerator encodes video at higher speeds and power efficiency than CUDA-based or CPU-based encoders at equivalent quality. NVENCODE API allows the programmer to control various settings of the encoder to set the desired tradeoff between quality and performance.

Nimble Streamer Live Transcoder has full support for NVidia video encoding hardware acceleration. Having the hardware capable of the processing and drivers properly installed, our customer can choose NVENC to handle streams' encoding.

You can take a look at the list of NVidia GPUs capable of hardware encoding acceleration. To make HW acceleration work, you need to install the SDK into the system. Use this link to download and install it.

If you haven't yet installed Nimble Streamer transcoder, use this page to find proper setup instruction.

The transcoding scenarios are created using our excellent web UI. You can check this YouTube playlist to see how various use cases are defined. Takes just couple of minutes to complete.




Scenarios setup page
Part of ABR scenario setup example

To set up NVENC settings you need to open encoder settings dialog and choose "nvenc" as the Encoder.


After that you can add various parameters and set up specific values to tune up your encoding process. Please find full list of available encoding parameters below.


preset

Specifies H.264 preset.

  • hp - high performncae
  • default - tradeoff between performance and quality
  • hq - high quality
  • llhp - low latency high performance
  • ll   - default low latency preset and the quality and speed is midway of the two other presets
  • llhq - low latency high quality
  • lossless - default lossless preset
  • losslesshp - lossless high performance
  • bd - blueray disk? NV_ENC_PRESET_BD_GUID


profile

Specifies H.264 profile.

  • baseline
  • main
  • high
  • high444


level

Specifies H.264 profile level.

  • 1
  • 1.0
  • 1b
  • 1.1
  • 1.2
  • 1.3
  • 2
  • 2.1
  • 2.2
  • 3
  • 3.1
  • 3.2
  • 4
  • 4.0
  • 4.1
  • 4.2
  • 5
  • 5.1


gpu

Selects which NVENC capable GPU to use. First GPU is 0, second is 1, and so on.

keint

Number of pictures within the current GOP (Group of Pictures).

  • 0 - NVENC_INFINITE_GOPLENGTH
  • 1 - only I-frames are used


bframes

Specifies maximum number of B frames between non-B-frames.

  • 0 - no B-frames
  • 1 - IBP
  • 2 - IBBP


refs

Specifies the DPB size used for encoding.
Setting it to 0 will let driver use the default dpb size. The low latency application which wants to invalidate reference frame as an error resilience tool is recommended to use a large DPB size so that the encoder can keep old reference frames which can be used if recent frames are invalidated.

fps_n, fps_d

Set output FPS numerator and denominator. It only affects num_units_in_tick and time_scale fields in SPS.
If fps_n=30 and fps_d=1 then it's 30 FPS
If fps_n=60000 and fps_d=2002 then it's 29.97 FPS
Source stream FPS or filter FPS is used if fps_n and fps_d is not set.

rate_control

Sets bitrate type.

  • cqp - Constant QP mode
  • vbr - Variable bitrate mode
  • cbr - Constant bitrate mode
  • vbr_minqp - ariable bitrate mode with MinQP
  • ll_2pass_quality - Multi pass encoding optimized for image quality and works only with low latency mode
  • ll_2pass_size - Multi pass encoding optimized for maintaining frame size and works only with low latency mode
  • vbr_2pass - Multi pass VBR


bitrate

Sets bitrate in Kbps.

max_bitrate

Sets max bitrate in Kbps.

init_bufsize

Specifies the VBV(HRD) initial delay in Kbits.

  • 0 - use the default VBV initial delay


bufsize

Specifies the VBV(HRD) buffer size in Kbits.

  • 0 - use the default VBV buffer size


qpi, qpp, qpb

Specifies the initial QP to be used for encoding, these values would be used for all frames if in CQP mode.

qmin

Specifies the minimum QP used for rate control

qmax

Specifies the maximum QP used for rate control

initialRCQP

Specifies the initial QP used for rate control

quality

Target Constant Quality level for VBR mode (range 0-51 with 0-automatic);

lossless

Enable lossless encode as following: sets QP to 0 and RC_mode to NV_ENC_PARAMS_RC_CONSTQP and profile to HIGH_444_PREDICTIVE_PROFILE.

  • 0 - disable
  • 1 - enable


monoChromeEncoding


  • 0 - disable
  • 1 - enable


frameFieldMode

Specifies the frame/field mode.

  • frame - NV_ENC_PARAMS_FRAME_FIELD_MODE_FRAME
  • filed - NV_ENC_PARAMS_FRAME_FIELD_MODE_FIELD
  • mbaff - NV_ENC_PARAMS_FRAME_FIELD_MODE_MBAFF


mvPrecision

Specifies the desired motion vector prediction precision.

  • default - NV_ENC_MV_PRECISION_DEFAULT
  • full_pell - NV_ENC_MV_PRECISION_FULL_PEL
  • half_pell - NV_ENC_MV_PRECISION_HALF_PEL
  • quarter_pel - NV_ENC_MV_PRECISION_QUARTER_PEL


enableAQ

Enable Spatial adaptive quantization

  • 0 - disable
  • 1 - enable


aqStrength

Specifies AQ strength.
AQ strength scale is from 1 (low) - 15 (aggressive).


enableTemporalAQ

Specifies Temporal adaptive quantization

  • 0 - disable
  • 1 - enable


strictGOPTarget

Set to enable to minimize GOP-to-GOP rate fluctuations

  • 0 - disable
  • 1 - enable


enableLookahead

Enable lookahead with depth <lookaheadDepth>;

lookaheadDepth

Maximum depth of lookahead with range 0-32 (only used if enableLookahead=1)

disableIadapt

Disable adaptive I-frame insertion at scene cuts (only has an effect when lookahead is enabled).

  • 0 - none
  • 1 - disable adaptive I-frame insertion


disableBadapt

Disable adaptive B-frame decision (only has an effect when lookahead is enabled)

  • 0 - none
  • 1 - Disable adaptive B-frame decision


enableIntraRefresh

Enable intra refresh. If the GOP structure uses B frames this will be ignored

  • 0 - disable
  • 1 - enable


intraRefreshPeriod

Interval between successive intra refresh.

intraRefreshCnt

Length of intra refresh in number of frames for periodic intra refresh. This value should be smaller than intraRefreshPeriod.

enableConstrainedEncoding

Set this to 1 to enable constrainedFrame encoding where each slice in the constarined picture is independent of other slices

useConstrainedIntraPred

Set 1 to enable constrained intra prediction.

separateColourPlaneFlag

Set to 1 to enable 4:4:4 separate colour planes

deblockingFilterMode

Specifies the deblocking filter mode. Permissible value range : [0, 2]

adaptiveTransform

Specifies the AdaptiveTransform Mode

  • auto - Adaptive Transform 8x8 mode is auto selected by the encoder driver
  • disable - Adaptive Transform 8x8 mode disabled
  • enable - ptive Transform 8x8 mode should be used


fmo

Specified the FMO Mode

  • auto - FMO usage is auto selected by the encoder driver
  • enable - Enable FMO
  • disable -Disble FMO


bdirect

Specifies the BDirect mode

  • auto - BDirect mode is auto selected by the encoder driver
  • disable - Disable BDirect mode
  • temporal - Temporal BDirect mode
  • spatial - Spatial BDirect mode


entropyCoding

Specifies the entropy coding mode

  • auto - Entropy coding mode is auto selected by the encoder driver
  • cabac - Entropy coding mode is CABAC
  • cavlc - Entropy coding mode is CAVLC


sliceMode

Specifies the way in which the picture is divided into slices.

  • 0 - MB based slices,
  • 1 - Byte based slices,
  • 2 - MB row based slices,
  • 3 - numSlices in Picture

When sliceMode == 0 and sliceModeData == 0 whole picture will be coded with one slice

sliceModeData

Specifies the sliceMode parameter.

  • sliceMode=0, sliceModeData specifies # of MBs in each slice(except last slice)
  • sliceMode=1, sliceModeData specifies maximum # of bytes in each slice(except last slice)
  • sliceMode=2, sliceModeData specifies # of MB rows in each slice(except last slice)
  • sliceMode=3, sliceModeData specifies number of slices in the picture. Driver will divide picture into slices optimally;



These are the parameters which you can use already in order to control NVidia video encoding hardware acceleration.
We keep improving our transcoder feature set, contact us for any questions.

Related documentation



NVIDIA, the NVIDIA logo and CUDA are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and/or other countries. 

Streaming Media Europe Readers' Choice Award 2016

$
0
0
As you know, Streaming Media is the leading magazine in the online streaming industry. We've been visiting their conferences - Streaming Media East and Streaming Media West - for several years so far and we're excited to participate in their activities.

Now we're honored to have Nimble Streamer as a finalist of Streaming Media Europe Readers Choice Awards in the "Best Streaming Innovation" nomination!



Thanks to everyone who voted for us!


RTMP delayed pull buffer improvements

$
0
0
RTMP-related feature set of Nimble Streamer allows creating various streaming scenarios with your infrastructure. One of them is delayed pull, or pull by request. It allows saving bandwidth when some stream is not consumed by viewers.

When a viewer requests an edge server for some stream - e.g. via HLS - this edge will start pulling RTMP stream right at that moment. So the origin will give the stream only when it's needed. You can read more in this article.


Usually it takes some time to start the playback on viewer side so we added an enhancement for this scenario. You can now specify RTMP buffer items count on origin so the edge could get bigger buffer to provide it to the player.

So the player will get several chunks almost immediately and start playback in a second without buffering.

To make this work, follow these steps.

1. Upgrade your edge and origin Nimble instances.

2. On your origin, open nimble.conf and add
rtmp_buffer_items = 4096

3. Restart origin server.

Now, once the edge requests origin it will get 30 seconds buffer immediately and will start the playback.


Related documentation


Live Streaming features in Nimble, Live Transcoder for Nimble Streamer, RTMP feature set, Build streaming infrastructure with Nimble Streamer, Achieving low latency for live streaming using Nimble Streamer,

The State of Streaming Protocols - October 2016

$
0
0
WMSPanel team continues analyzing the state of streaming protocols.

The metrics calculations are based on 3.7+ billion views. The stats are collected from 3000+ media servers (Nimble Streamer and Wowza).

Protocols share remain stable, i.e. HLS share is about 75% with RTMP around 12% and progressive download near 6%. MPEG-DASH is ahead of SmoothStreaming, both having less than 1%.

The State of Streaming Protocols, October 2016

You can compare that to September stats below.



The State of Streaming Protocols, September 2016

This report is brought to you by WMSPanel team. We'll keep analyzing protocols to see the dynamics. Check our updates at FacebookTwitterGoogle+ or LinkedIn.

October news

$
0
0

October brought some good news for our customers.

First of all, we're honored to see Nimble Streamer as a finalist of Streaming Media Europe Readers Choice Awards in the "Best Streaming Innovation" nomination. We thank everyone who voted for us and hope to get more highlights by the industry press in future.

Speaking of industry  highlights, we are glad to see Radiant Media Player team now considers Nimble Streamer as fully supported media server. You can see us among the partners of this excellent solution.

Live Transcoder


Nimble Streamer Live Transcoder now has full support for NVidia hardware encoding acceleration via NVENC for H.264. It's available for both Windows and Linux platforms.
You can read this article for more details about the setup and capabilities.

Our customers report on huge off-load of their CPU when using GPU via our Transcoder.

Nimble Streamer


Nimble has improvements for both VOD and live scenarios.

When setting up origin-edge delivery configuration with RTMP delayed pull option, you may experience some delay on the viewer side starting the playback from edge. We've added a new option for origin side which you can use for decreasing the buffer. Read this article for more details.

Audio-only and video-only transmuxing for ABR VOD HLS is now supported. You will use SMIL files for that purpose, read this article for more details.

Mobile SDK


Larix mobile SDK was improved for both iOS and Android.


  • iOS SDK now has Larix sample application with Swift 3 support along with improved audio quality.
  • Android has streaming enhancements as well as sound Mute support.


Latest versions of SDK packages will be sent to our customers this week. Subscribe here to get those in case you haven't done it yet.


Dispersa

Our media streams monitoring service has a few updates as well

When you make setup for streams check-overs, you can now select to alert on email and push API when at least one checkpoint reports offline or when all checkpoints report offline.
For your convenience the subject also now contains stream name with checkpoint names, like "Stream offline alert (1/6) - Nimble Promo Video AMS1"



The last but not the least update: check the State of Streaming Protocols for October 2016.

Follow us at FacebookTwitterGoogle+ or LinkedIn to get latest news and updates of our products and services.

Nimble Streamer control for non-admin WMSPanel users

$
0
0
Nimble Streamer can be controlled in two ways. First one is to change config files, the second one is to use WMSPanel as a web UI.

WMSPanel is the easiest way to manage your streaming infrastructure based on Nimble Streamer. You can access via any browser and apply settings to multiple servers.

Usually only account admins could control Nimble Streamer behavior. Now, WMSPanel allows those admins to give permission to non-admin users for controlling Nimble Streamer instances. You can specify which servers they may control and then set up white label access to WMSPanel to change the look-and-feel on the panel in order to make it look like you need.

Let's see how you can give that access.



Go to Control -> Users management menu to see the list of current users.

Users list

Now click on Abilities link on the designated user line to see the following dialog.

Servers selection dialog

Here you can see the list of the servers which you have now in your account. Select those which you need to give access for and slick on Save.

After that, the selected user will be able to do all the setup of his/her Nimble Streamer instance, just like the account administrator.

If you have any questions about our feature set, please contact our helpdesk.


Related documentation


Nimble Streamer, Building streaming infrastructure, Live Streaming with Nimble Streamer,

Processing published Icecast in Nimble Streamer

$
0
0
Nimble Streamer has wide audio streaming feature set which includes both live and VOD. Live audio streaming covers both transmuxing and transcoding of Icecast pulled streams.

Now we're expanding this feature set by supporting the published Icecast sources which have MP3 or AAC codecs.

Current solution was tested with a number of existing Icecast publishing solutions, some of them are as follows:


Those tools' configuration files and sample playlists can be found in a separate githib repo in our account.

In our case the standard "source" login is used and the password is "secret" - just for demo purposes.

Let's see how it's set up for Nimble Streamer using WMSPanel.



First we need to define interfaces used for accepting published Icecast stream. Go to Nimble Streamer -> Live streams settings, choose your server from the drop down list and click on Interfaces tab.

List of interfaces
Now click on Add Icecast interface to see dialog as shown below.

Define Icecast interface

Add IP Address and Port here. Usually it's 8000 port and you may keep IP Address field blank if you need all IP addresses to be listened.

Now click on Applications tab to see the list of existing apps. Then click on Add application settings to define new app.

Adding new application for Icecast published stream

Here the application name will be "icecast", as defined in the configs. The login is "source" and password as "secret" - same as in configs.

Save settings to apply them to your servers.

Now the published Icecast stream will be available for playback or other actions within a few seconds once the settings are applied to the server. Now go to Nimble Streamer -> Live Streams menu to see the appeared incoming stream and then switch to Outgoing streams to see the result output. There you will be able to try playback and get the output stream URL for your further usage, as described in this article.

Further audio streaming options


With Icecast/SHOUTcast streams being processed in via single transmuxing engine you may also use them in various scenarios like these mentioned below.


Let us know if you have any suggestions or questions regarding audio streaming, we're opened for discussions.

Related documentation



The State of Streaming Protocols - November 2016

$
0
0
WMSPanel team continues analyzing the state of streaming protocols.

The metrics calculations are based on ~3.7 billion views. The stats are collected from 3100+ media servers (Nimble Streamer and Wowza).

Protocols share remain stable, i.e. HLS share is about 77% with RTMP around 12% and progressive download near 5%.

The State of Streaming Protocols, November 2016

You can compare that to October stats below.



The State of Streaming Protocols, October 2016
This report is brought to you by WMSPanel team. We'll keep analyzing protocols to see the dynamics. Check our updates at FacebookTwitterGoogle+ or LinkedIn.

November news

$
0
0
We've made a few significant updates in November.

First, Larix mobile SDK for iOS has been updated with a new feature - Auto Focus Lock (AF-L). Just long press anywhere in the preview, and AF is locked until you tap to re-focus.
Use this page to proceed with SDK license subscription.

Nimble Streamer has a few updates as well.


Published Icecast streams can now be processed in Nimble Streamer. Read this article to see how it's set up and find out more about audio streaming scenarios supported by Nimble Streamer.

If you face any artifacts when publishing streams via UDP to Nimble Streamer, read this post describing the steps to avoid them.


WMSPanel non-admin users can now be grantedpermission by account admins to control Nimble Streamer instances. Please read this article for more details.

Last but not least, if you use WMSPanel API to control Nimble instances, you may set up threshold notifications to be alerted when you make too many API requests and are close to reach the calls limit. Visit this page for details.



The last but not the least update: check the State of Streaming Protocols for November 2016.


Follow us at FacebookTwitterGoogle+ or LinkedIn to get latest news and updates of our products and services.


NVENC decoder in Nimble Live Transcoder

$
0
0
Nimble Streamer Live Transcoder has full support for NVidia video transcoding hardware acceleration. Having the hardware capable of the processing and drivers properly installed, our customer can choose NVENC to handle processing.


NVidia® Products with the Kepler, Maxwell and Pascal generation GPUs contain a dedicated accelerator for video decoding and encoding, called NVENC, on the GPU die. You can take a look at the list of NVidia GPUs capable of that.

We've previously described the NVidia encoding setup. Now lets see how hardware-based decoding can be used.

In the transcoding scenario you need to point to video decoder blue rectangle (with a film on it) and then click on appeared gear button.


You'll see decoder settings dialog. In the Decoder drop-down list it will show "Default" option. This is a software decoder used by Nimble Transcoder by default.



To use GPU decoder, choose NVENC from from list. This will pick up NVidia GPU to take action.

The GPU field is a number which allows specifying the sequential number of physical GPU to process the decoding. So if you want to specify exact GPU to decode specific stream, you need to type the number, e.g. 0, 1 etc. for as many GPUs as you have. 

Many Nvidia GPU cards have encoding sessions count restricted to 2 active sessions, the decoding sessions are not limited. So you can use even GTX card to help the transcoder to decode with no limitation.

This is one of the features we planned to introduce in our Live Transcoder. We keep improving our transcoder feature set, contact us for any questions.

Related documentation



NVIDIA, the NVIDIA logo and CUDA are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and/or other countries. 

Specifying decoder threads in Live Transcoder

$
0
0
Nimble Streamer Live Transcoder allows performing various transformations over incoming video and audio streams.

Any incoming stream needs to be decoded before any further transformation unless you use a pass-through mode. The decoding may be either hardware-based (such as NVidia GPU decoding supported by Live Transcoder or Intel QuickSync) or software-based.

Software decoding may be optimized in order to use processor resources optimally. This is why the Transcoder allows using multiple threads for video decoding. Let's see how you can utilize it.

In the transcoding scenario you need to point to video decoder blue rectangle (with a film on it) and then click on appeared gear button.


You'll see decoder settings dialog. In the Decoder drop-down list it will show "Default" option. This is a software decoder used by Nimble Transcoder by default.




Use Threads edit box to specify the number of sessions threads used for decoding in this this particular incoming stream. Now click OK and then save transcoding scenario to apply it to the server.

You can specify this separately to any decoder in any scenario

Visit Live Transcoder webpage for more details about Live Transcoder and contact us if you have any question.

Related documentation


NVENC context cache for Live Transcoder

$
0
0
Nimble Streamer Live Transcoder has full support for NVidia video transcoding hardware acceleration.

Some complex transcoding scenarios may result excessive load on the hardware which may affect the performance and result errors. So you may find the following lines in Nimble Streamer logs: "Failed to encode on appropriate rate" or "Failed to decode on appropriate rate".

This is a known issue for NVENC which  In order to overcome this, we created NVENC contexts caching mechanism. It creates encoding and decoding contexts at the start of the transcoder. So when the encoding or decoding session starts, it picks up the context from the cache. It also allows reusing contexts. 

The following nimble.conf parameters need to be used in order to control NVENC context. Read this configuration guide for more information about Nimble config.



Use this parameter to enables the context cache feature:
nvenc_context_cache_enable = true

In order to handle context cache efficiently, the transcoder needs to lock the calls for NVidia drivers APIs to itself. This allows making the queue for the contexts creation and control this exclusively which improves the performance significantly. This is what the following parameter is for.
nvenc_context_create_lock = true

You can set transcoder to create contexts at the start. You can specify how many contexts will be created for each graphic unit for encoding and for decoding sessions.
Common format is this
nvenc_context_cache_init = 0:<EC>:<DC>,2:<EC>:<DC>,N:<EC>:<DC>
As you see it's a set of triples where first digit defines the GPU number, EC is encoder contexts umber and DC is decoder contexts number.
Check this example:
nvenc_context_cache_init = 0:32:32,1:32:32,2:16:16,3:16:16
This means you have 4 cards, first two cards have 32 contexts for encoding and 32 for decoding, then other two cards have 16 contexts respectively.

When a new context is created on top of those created on transcoder start, it will be released once the encoder or decoder session is over (e.g. the publishing was stopped). To make those contexts available for further re-use, you need to specify this parameter.
nvenc_context_reuse_enable = true
We recommend to use this option by default.

So as example, having 2 GPUs your config may looks like this:
nvenc_context_cache_enable = true
nvenc_context_create_lock = true
nvenc_context_cache_init = 0:32:32,1:32:32
nvenc_context_reuse_enable = true

That's it, use those parameters for the cases when you experience issues with NVENC.

We keep improving our transcoder feature set, contact us for any questions.

Related documentation



NVIDIA, the NVIDIA logo and CUDA are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and/or other countries. 

Append metadata to Icecast streams

$
0
0
Nimble Streamer has an extended audio streaming feature set for both live and VOD. Live audio streaming covers both transmuxing and transcoding of Icecast pulled and published streams.

In addition to just transmuxing and transcoding audio, Nimble now allows adding any metadata to any outgoing Icecast stream. So any player capable of Icecast playback and metadata processing will show respective info during the playback.

Let's see how you can do that.



Click on Nimble Streamer -> Live streams settings top menu then click on Icecast metadata tab.


Now click on Add Icecast metadata button to see the metadata setup dialog.



Application name and Stream name must be same as your outgoing stream name which you'd like to add metadata to.

The next set of fields is for the metadata items, each name has respective megadata item name:

  • Channel name
  • Description for the channel
  • Genre
  • Publicity
  • Bitrate in KBps
  • Audio info which is automatically filled with bitrate value but you can add any additional info there

You can also specify what servers to apply this setting to - just use the checkbox for respective servers. Click Save to apply your settings and check the list to show the update process.




That's it. If you want to change anything - just click on the tool icon.

Further audio streaming options


With Icecast/SHOUTcast streams being processed in via single transmuxing engine you may also use them in various scenarios like these mentioned below.


Let us know if you have any suggestions or questions regarding audio streaming, we're opened for discussions.

Related documentation


Setting constant bitrate for x264 encoder

$
0
0
Live Transcoder for Nimble Streamer has wide range of transcoding capabilities which include H.264 encoding with x264 library licensed for commercial usage by our company so any customer with our Transcoder may use x264 parameters to set up outgoing stream.

This article answers a popular question of our customers - "How can I set up constant bitrate for my streams?" - using x264 encoder settings. This encoder is also known as libx264.

Let us give a couple of short answers and then a full description.

How to set up CRF (Constant Rate Factor) with maximum bitrate


As you may have seen from our screencasts - such as UI sneak preview for ABR scenario setup - you can use web UI to set up transcoding scenario with source streams, transformation blocks and encoder. You can see blue block being sources of streams, green blocks for filters to transform the content and orange blocks as outgoing streams encoders. If you point your mouse to any block, you'll see setup icon - you can click on it to see details dialog.

Click on the orange block (that is the encoder settings box) and set the following custom fields:
  • crf to 20
  • vbv-maxrate to 400k
  • vbv-bufsize to 1835k
This will set maximum bit rate to 400Kbps with CRF of 20.

Set up CRF with maximum bitrate
This is an equivalent of the following FFmpeg parameters:
-crf 20 -maxrate 400k -bufsize 1835k

How to set up CBR (Constant Bit Rate)


The constant bitrate can be set up almost the same way, in the orange encoder block. If you need bitrate 4Mbps, set the values as follows:

  • bitrate to 4000k
  • vbv-maxrate to 4000k
  • vbv-bufsize to 1835k


Setting constant bitrate
This is an equivalent of the following FFmpeg parameters:
-b:v 4000k -minrate 4000k -maxrate 4000k -bufsize 1835k

See the following sections to explanations.

Some internals


Nimble Streamer Live Transcoder uses libx264 which has some flexibility to control the bitrate. As described in FFmpeg docs which uses libx264 as well, the CBR is not supported directly due to very complex codec logic but we can emulate and set maximum bitrate.

If you set vbv-maxrate and vbv-bufsize to something basic like the H.264 High Profile @ Level 4.1 limitations, the encoder will still operate in ABR mode, but will constrain itself to not go outside these specifications.

If you set vbv-maxrate to the same value as bitrate, then the encoder will operate in CBR mode. Notice that it's not a strict CBR where every picture has the same size. vbv-bufsize controls the size of the buffer which allows for bitrate variance while still staying inside the CBR limitations.

If you set only "bitrate" parameter then encoder will work in unconstrained VBR mode, having the parameter value as a target but not as fixed value.

Minimum bitrate (minrate)

As for lower bitrate threshold, the library will need to increase quality if average quality cannot reach min-rate, but in case if max possible quality still cannot fill bandwidth gap you will have bitrate lower than you set. Hence "-minrate 4000k" parameter in the example above will just not work - it's not used for libx264 and was added to FFmpeg guide accidentally. We've checked ffmpeg code - it's just a bug in the docs.


To get some more details please read this FFmpeg docs page and also this forum thread.

Feel free to visit Live Transcoder webpage for other transcoding features description and contact us if you have any question.

Related documentation


Viewing all 436 articles
Browse latest View live